Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.23.501235

ABSTRACT

T lymphocyte reduction and immunosenescence frequently occur in severe and critical coronavirus disease 2019 (COVID-19) patients, which may cause immunothrombosis and numerous sequelae. This study integrated analyzed multi-omics data from healthy donors, pneumonia, COVID-19 patients (mild & moderate, severe, and critical), and convalescences, including clinical, laboratory test, PBMC bulk RNA-seq, PBMC scRNA-seq and TCR-seq, BAL scRNA-seq, and lung proteome. We revealed that there are certain associations among T lymphocyte reduction, CD8+ T cell senescence, Th17 immune activation, and immunothrombosis. A specific phenotype (S. P.) CD8+ T cells were identified in severe and critical COVID-19 patients in both PBMC and BAL scRNA-seq, which showed highly TCR homology with terminal effector CD8+ T cells and senescent CD8+ T cells. Pseudotime analysis showed that the S. P. CD8+ T cells were located in the transition trajectory from mild to severe disease. Which may be activated by terminal effector CD8+ T cells or senescent CD8+ T cells, thereby promoting Th17 cell differentiation. This phenomenon was absent in healthy donors, mild and moderate COVID-19 patients, or convalescences. Our findings are an important reference for avoiding the conversion of patients with mild to severe diseases and provide insight into the future prevention and control of COVID-19 and its variants.


Subject(s)
Coronavirus Infections , Pneumonia , COVID-19 , Disease
2.
Int J Radiat Biol ; 98(10): 1532-1541, 2022.
Article in English | MEDLINE | ID: covidwho-1751954

ABSTRACT

Purpose: Low-dose radiation therapy (LDRT) is an evidence-based anti-inflammatory treatment. In anti-COVID-19, our study suggests that low to moderate dose radiation of < 1.5 Gy can inhibit the induction of inflammatory cytokine and attenuate the ACE2 depression induced by spike protein in human bronchial epithelial cells in COVID-19 infection. Our study provided further mechanistic evidence to support LDRT as a cost-effective treatment for COVID-19 to relieve the severe inflammatory reaction and lung injury. Methods and materials: A cellular model was created by treating human bronchial epithelial cells (BEP2D) with SARS-CoV-2 spike protein. We used the qRT-PCR and ELISA analysis to identify the production of inflammatory cytokines. The BEP2D control cells and the spike-treated cells were irradiated using a single low to moderate dose radiation of 0.5 Gy, 1 Gy, and 1.5 Gy. The inflammatory cytokines and ACE2 expression were detected at different time points. Results: The soluble SARS-CoV-2 spike protein stimulated the formation of inflammatory cytokines IL-6 and TNF-α while reducing the ACE2 protein expression in human bronchial epithelial cells. A single low to moderate dose exposure of 0.5 Gy, 1 Gy, and 1.5 Gy could attenuate the IL-6 and TNF-α induction and rescue the depression of ACE2 by spike protein. Moreover, the spike protein increased the proteolytic degradation of ACE2 protein by promoting NEDD4-mediated ubiquitination of ACE2. Conclusions: The low-dose radiation can attenuate ACE2 depression and inflammatory response produced in the targeted human bronchial epithelial cells by spike protein. This coordinating effect of LDRT may relieve the severe inflammatory reaction and lung injury in COVID-19 patients.


Subject(s)
COVID-19 , Lung Injury , Angiotensin-Converting Enzyme 2 , COVID-19/radiotherapy , Cytokines/metabolism , Epithelial Cells/metabolism , Humans , Interleukin-6/metabolism , Lung Injury/metabolism , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Front Genet ; 12: 728960, 2021.
Article in English | MEDLINE | ID: covidwho-1417081

ABSTRACT

Despite that several therapeutic agents have exhibited promising prevention or treatment on Coronavirus disease-2019 (COVID-19), there is no specific drug discovered for this pandemic. Targeting virus-host interactome provides a more effective strategy for antivirus drug discovery compared with targeting virus proteins. In this study, we developed a network-based infrastructure to prioritize promising drug candidates from natural products and approved drugs via targeting host proteins of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We firstly measured the network distances between drug targets and COVID-19 disease module utilizing the network proximity approach, and identified 229 approved drugs as well as 432 natural products had significant associations with SARS-CoV-2. After searching for previous literature evidence, we found that 60.7% (139/229) of approved drugs and 39.6% (171/432) of natural products were confirmed with antivirus or anti-inflammation. We further integrated our network-based predictions and validated anti-SARS-CoV-2 activities of some compounds. Four drug candidates, including hesperidin, isorhapontigenin, salmeterol, and gallocatechin-7-gallate, have exhibited activity on SARS-COV-2 virus-infected Vero cells. Finally, we showcased the mechanism of actions of isorhapontigenin and salmeterol via network analysis. Overall, this study offers forceful approaches for in silico identification of drug candidates on COVID-19, which may facilitate the discovery of antiviral drug therapies.

4.
Molecules ; 25(19)2020 Oct 08.
Article in English | MEDLINE | ID: covidwho-1125723

ABSTRACT

The major groups of antioxidant compounds (isoflavonoids, xanthones, hydroxycinnamic acids) in the rhizome methanol extracts of four Ukrainian Iris sp. (Iris pallida, Iris hungarica, Iris sibirica, and Iris variegata) were qualitatively and quantitatively analyzed using HPLC-DAD and UPLC-MS/MS. Gallic acid, caffeic acid, mangiferin, tectoridin, irigenin, iristectorigenin B, irisolidone, 5,6-dihydroxy-7,8,3',5'-tetramethoxyisoflavone, irisolidone-7-O-ß-d-glucopyranoside, germanaism B, and nigricin were recognized by comparing their UV/MS spectra, chromatographic retention time (tR) with those of standard reference compounds. I. hungarica and I. variegata showed the highest total amount of phenolic compounds. Germanaism B was the most abundant component in the rhizomes of I. variegata (7.089 ± 0.032 mg/g) and I. hungarica (6.285 ± 0.030 mg/g). The compound analyses showed good calibration curve linearity (r2 > 0.999) and low detection and quantifications limit. These results validated the method for its use in the simultaneous quantitative evaluation of phenolic compounds in the studied Iris sp. I. hungarica and I. variegata rhizomes exhibited antioxidant activity, as demonstrated by the HPLC-ABTS system and NRF2 expression assay and anti-inflammatory activity on respiratory burst in human neutrophils. Moreover, the extracts showed anti-allergic and cytotoxic effects against cancer cells. Anti-coronavirus 229E and lipid formation activities were also evaluated. In summary, potent antioxidant marker compounds were identified in the examined Iris sp.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Iris Plant/chemistry , Plant Extracts/pharmacology , Coronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Humans , NF-E2-Related Factor 2/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Tumor Cells, Cultured
5.
Biomed J ; 44(3): 293-303, 2021 06.
Article in English | MEDLINE | ID: covidwho-1051494

ABSTRACT

BACKGROUND: While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection presents with mild or no symptoms in most cases, a significant number of patients become critically ill. Remdesivir has been approved for the treatment of coronavirus disease 2019 (COVID-19) in several countries, but its use as monotherapy has not substantially lowered mortality rates. Because agents from traditional Chinese medicine (TCM) have been successfully utilized to treat pandemic and endemic diseases, we designed the current study to identify novel anti-SARS-CoV-2 agents from TCM. METHODS: We initially used an antivirus-induced cell death assay to screen a panel of herbal extracts. The inhibition of the viral infection step was investigated through a time-of-drug-addition assay, whereas a plaque reduction assay was carried out to validate the antiviral activity. Direct interaction of the candidate TCM compound with viral particles was assessed using a viral inactivation assay. Finally, the potential synergistic efficacy of remdesivir and the TCM compound was examined with a combination assay. RESULTS: The herbal medicine Perilla leaf extract (PLE, approval number 022427 issued by the Ministry of Health and Welfare, Taiwan) had EC50 of 0.12 ± 0.06 mg/mL against SARS-CoV-2 in Vero E6 cells - with a selectivity index of 40.65. Non-cytotoxic PLE concentrations were capable of blocking viral RNA and protein synthesis. In addition, they significantly decreased virus-induced cytokine release and viral protein/RNA levels in the human lung epithelial cell line Calu-3. PLE inhibited viral replication by inactivating the virion and showed additive-to-synergistic efficacy against SARS-CoV-2 when used in combination with remdesivir. CONCLUSION: Our results demonstrate for the first time that PLE is capable of inhibiting SARS-CoV-2 replication by inactivating the virion. Our data may prompt additional investigation on the clinical usefulness of PLE for preventing or treating COVID-19.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Perilla frutescens , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Virus Inactivation , Animals , COVID-19 , Chlorocebus aethiops , Humans , Perilla frutescens/chemistry
6.
RSC Adv ; 10(62): 38128-38141, 2020 Oct 12.
Article in English | MEDLINE | ID: covidwho-899990

ABSTRACT

On Wednesday 11th March, 2020, the world health organization (WHO) announced novel coronavirus (COVID-19, also called SARS-CoV-2) as a pandemic. Due to time shortage and lack of either a vaccine and/or an effective treatment, many trials focused on testing natural products to find out potential lead candidates. In this field, an edible and folk medicinal Jordanian plant Crepis sancta (Asteraceae) was selected for this study. Phytochemical investigation of its enriched polyphenolic extract afforded four eudesmane sesquiterpenes (1-4) together with (6S,9R)-roseoside (5) and five different methylated flavonols (6-10). Structure elucidation of isolated compounds was unambiguously determined based on HRESIMS, X-ray crystallography, and exhaustive 1D and 2D NMR experiments. All isolated compounds were assessed for their in vitro anti-inflammatory, antiallergic and in silico COVID-19 main protease (Mpro) inhibitory activities. Among the tested compounds, compounds 5-10 revealed potent anti-inflammatory, antiallergic and COVID-19 protease inhibitory activities. Chrysosplenetin (10) is considered as a promising anti-inflammatory and antiallergic lead structure adding to the phytotherapeutic pipeline. Moreover, its inhibitory activity against SARS-CoV-2 Mpro, supported by docking and molecular dynamic studies, strengthens its potential as a lead structure paving the way toward finding out a natural remedy to treat and/or to control the current COVID-19 pandemic.

7.
Molecules ; 25(19):4588, 2020.
Article | MDPI | ID: covidwho-838432

ABSTRACT

The major groups of antioxidant compounds (isoflavonoids, xanthones, hydroxycinnamic acids) in the rhizome methanol extracts of four Ukrainian Iris sp. (Iris pallida, Iris hungarica, Iris sibirica, and Iris variegata) were qualitatively and quantitatively analyzed using HPLC-DAD and UPLC-MS/MS. Gallic acid, caffeic acid, mangiferin, tectoridin, irigenin, iristectorigenin B, irisolidone, 5,6-dihydroxy-7,8,3′,5′-tetramethoxyisoflavone, irisolidone-7-O-β-d-glucopyranoside, germanaism B, and nigricin were recognized by comparing their UV/MS spectra, chromatographic retention time (tR) with those of standard reference compounds. I. hungarica and I. variegata showed the highest total amount of phenolic compounds. Germanaism B was the most abundant component in the rhizomes of I. variegata (7.089 ±0.032 mg/g) and I. hungarica (6.285 ±0.030 mg/g). The compound analyses showed good calibration curve linearity (r2 >0.999) and low detection and quantifications limit. These results validated the method for its use in the simultaneous quantitative evaluation of phenolic compounds in the studied Iris sp. I. hungarica and I. variegata rhizomes exhibited antioxidant activity, as demonstrated by the HPLC-ABTS system and NRF2 expression assay and anti-inflammatory activity on respiratory burst in human neutrophils. Moreover, the extracts showed anti-allergic and cytotoxic effects against cancer cells. Anti-coronavirus 229E and lipid formation activities were also evaluated. In summary, potent antioxidant marker compounds were identified in the examined Iris sp.

8.
Zhongguo Zhong Yao Za Zhi ; 45(10): 2239-2248, 2020 May.
Article in Chinese | MEDLINE | ID: covidwho-398793

ABSTRACT

To analyze the development of coronavirus disease 2019(COVID-19), this study systematically retrieved relevant Chinese and English literatures from both CNKI and Web of Science database platforms by bibliometric research method and CiteSpace 5.5.R2 software to obtain information and visualize relevant literatures. A total of 695 Chinese and 446 English literatures were included in this paper. Statistics showed that China had published most of the literatures and established close cooperation with the United States and the United Kingdom. Through the analysis, Tongji Medical College of Huazhong University of Science and Technology and its affiliated hospitals published the largest number of the publications. Moreover, the highly productive journals including Journal of Traditional Chinese Medicine and The Lancet covered eight major fields, such as medicine, medical virology, radiation medicine, infectious disease, and traditional Chinese medicine. Besides, a total of 35 special COVID-19 funds were recently established to subsidize these studies. The key words and themes analysis indicated that protein structure of COVID-19, receptor targets and mechanisms of action, integration of traditional Chinese and Western medicine, screening and development of antiviral drugs from traditional Chinese medicine and Western medicine, vaccine research as well as epidemiological characteristics and prediction are current study hotspots. This study provides a reference for researchers to rapidly master main study directions of COVID-19 and screen out relevant literatures.


Subject(s)
Betacoronavirus , Bibliometrics , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , China , Humans , SARS-CoV-2 , United Kingdom , United States
SELECTION OF CITATIONS
SEARCH DETAIL